Skip to main content

Advantages of Super Long Stroke Engines


Super long stroke means increased swept volume allowing more mass of air to be drawn into the cylinder which in turn allows more fuel to be burnt, hence increasing power output. Super long stroke increases piston travel time and thereby decreases crank speed so more time for combustion during the stroke. The efficiency of Large dia propellers is best at slower RPM.With super long stroke we can have slower RPM of engine with no change in mean piston
speed of the engine.


Classification of engine based on stroke/bore ratio:

Short stroke : 2.6-3.2
Long stroke : 3.2-4.0
Super-Long stroke : 4.0-4.7
Ultra-Long stroke : >4.7

These engines allow for low quality of fuel to be burnt as there is more time available for fuel combustion. With increase in stroke length we have an advantage of burning dirty fuel/low grade fuel at min rev/low speed with good efficiency. This also results in proper utilization of fuel resulting in reduction of NOx generation.
An engine cylinder with longer stroke-to-bore ratio will have a smaller surface area exposed to the combustion chamber gases compared to a cylinder with shorter stroke-to-bore ratio. The smaller area leads directly to reduced in-cylinder heat transfer, increased energy transfer to the crankshaft and, therefore, higher efficiency.

Scavenge air of the cylinder is also affected by the stroke-to-bore ratio in a uniflow-scavenging, two-stroke engine. As the stroke-to-bore ratio increases, the distance the fresh air has to travel between the intake ports at one end of the cylinder and the exhaust ports at the other end correspondingly increases. This increased distance results in higher scavenging efficiency and, as a result, lower pumping work because less fresh air is lost via charge short circuiting. Again, it improves fuel combustion by ensuring more fresh air.

These engines have a better power to weight ratio and since more heat is converted into useful work, an increased thermal efficiency.

Comments

Popular posts from this blog

Difference Between A, B & C-Class Divisions?

IMO Symbol A Class Division  IMO Symbol B Class Division  SOLAS has tables for structural fire protection requirement of bulkheads and decks. The requirements depend on the spaces in question and are different for passenger ships and cargo ships. The Administration has required a test of a prototype bulkhead or deck in accordance with the Fire Test Procedures Code to ensure that it meets the above requirements for integrity and temperature rise. Types of Divisions: "A" Class "B" Class "C" Class "A" Class: "A" class divisions are those divisions formed by bulkheads and decks which comply with the following criteria: They are constructed of steel or equivalent material They are suitably stiffened They are constructed as to be capable of preventing the passage of smoke and flame to the end of the one-hour standard fire test. they are insulated with approved non-combustible materials such that the average tempera...

Bilge Injection Valve

Bilge Injection is a valve that enables the engine room bilges to be pumped out directly overboard in the event of an emergency such as flooding. The valve is normally fitted to the end of a branch connection with the main sea water suction line. This enables large main seawater cooling pumps to be used as a bilge pump in an emergency. Emergencies like fire and flooding involve the use of seawater. If there is a fire, seawater is the biggest resource of water available in the sea. Similarly, if it involves flooding of the engine room, cargo spaces or any other place on the ship for that matter; you would again require pumping the sea water out of the ship. In both these cases, you require pumps.  There are two valves in close proximity namely main injection valve and bilge injection valve. Both of them have their own independent controls. The diameter of the bilge injection valve is kept nearly 66% of the main valve diameter which draws water directly from the sea th...

Why do we blow through engine before starting ?

The engine is blown through on air before starting it : a) To Blow out through indicator cock any residual exhaust gas or     other products of combustion trapped inside the cylinder after     shutting the engine. b) To check if any jacket cooling water from cylinder head or     turbocharger or any other source, has leaked while the engine          was shut and collected on top of piston. If while blowing                  through, water comes out of indicator cock or relief valve, we          need to investigate and rectify the fault before starting the                engine. It is imperative that the engine is blown through before        starting. There have been cases where the generator engine has        been started from control room without bothering to blow     th...